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The theory of magnetic symmetry in quasicrystals, described in a companion

paper [Lifshitz & Even-Dar Mandel (2004). Acta Cryst. A60, 167±178], is used to

enumerate all three-dimensional octagonal spin point groups and spin-space-

group types and calculate the resulting selection rules for neutron diffraction

experiments.

1. Introduction

We enumerate here all three-dimensional octagonal spin

groups and calculate their selection rules for neutron scat-

tering, based on the theory developed in a companion paper

(Lifshitz & Even-Dar Mandel, 2004) where we have provided

the details for the extension to quasicrystals (Lifshitz, 1998) of

Litvin & Opechowski's theory of spin groups (Litvin, 1973;

Litvin & Opechowski, 1974; Litvin, 1977). We assume the

reader is familiar with the companion paper, where we have

also given experimental and theoretical motivation for

carrying out a systematic enumeration of spin groups for

quasicrystals. This is the ®rst complete and rigorous

enumeration of spin groups and calculation of selection rules

for any three-dimensional quasicrystal. Other than the peda-

gogical example of two-dimensional octagonal spin groups

given in the companion paper, past calculations are scarce.

Decagonal spin point groups and spin-space-group types in

two dimensions have been listed by Lifshitz (1995) without

providing much detail regarding the enumeration process. All

possible lattice spin groups ÿe for icosahedral quasicrystals

have been tabulated by Lifshitz (1998) along with the selection

rules that they impose, but a complete enumeration of icosa-

hedral spin groups was not given. We intend to continue the

systematic enumeration of spin groups in future publications

by treating all the other common quasiperiodic crystal systems

(pentagonal, decagonal, dodecagonal and icosahedral),

although we shall not provide complete details of the calcu-

lations as we do here.

Although the enumeration in three dimensions is more

elaborate, it proceeds along the same lines as the two-

dimensional example given in the companion paper (Lifshitz

& Even-Dar Mandel, 2004). Familiarity with the calculation of

ordinary (nonmagnetic) octagonal space groups (Rabson et

al., 1991) may also assist the reader in following the calcula-

tions performed here, although knowledge of that calculation

is not assumed. We begin in x2 with a description of the two

rank-5 octagonal Bravais classes, a reminder of the octagonal

point groups in three dimensions (summarized in Table 1), and

a summary of the effect of the different point-group opera-

tions on the generating vectors of the two lattice types (Table

2). In x3, we enumerate the octagonal spin point groups by

noting the restrictions (summarized in Table 3) imposed on

their generators owing to the isomorphism between G=G" and

ÿ=ÿe. We then proceed to calculate the phase functions

associated with the generators of the spin point groups by

making use of the group compatibility condition

8�g; �; �h; �� 2 GS : ��
gh �k� � �

g �hk� ���
h�k�: �1�

We begin this in x4 by calculating the gauge-invariant phase

functions �
e �k� associated with the lattice spin group ÿe. To

save space, proofs for some of the results of this section appear

in Appendix A. We then choose a gauge by a sequence of

gauge transformations which we describe in x5. We complete

the calculation of the remaining phase functions, separately

for each octagonal point groupÐin x6, we provide detailed

calculations for point groups 8 and 8mm, and in Appendix B

for all remaining octagonal point groups. The resulting spin-

space-group types for point group 8mm are listed, for both

types of lattice, in Tables 4 and 5 using a generalized format in

which we do not explicitly identify the spin-space operations

that are paired with the generators of the point group. The

spin-space-group types for the remaining octagonal point

groups are listed by point group and lattice type in Tables B-1

to B-16 of Appendix B. In x7, we complete the enumeration by

making this explicit identi®cation and introduce the notation

used for octagonal spin space groups. The actual identi®cation

of spin-space operations for point group 8mm is given in

Tables 6 and 7, and for the remaining octagonal point groups

in Appendix C. We conclude in x8 by calculating the selection

rules for neutron diffraction experiments, imposed by the

different octagonal spin space groups, which are summarized

in Tables 8±12.1

1 Appendices A, B and C are not included in this publication but are available
from the IUCr electronic archives (Reference: PZ5003). Services for accessing
these data are described at the back of the journal.
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2. Background for the enumeration

2.1. Three-dimensional octagonal Bravais classes

Recall that all rank-5 octagonal lattices in three dimensions

fall into two Bravais classes (Mermin et al., 1990). Lattices of

both types contain a two-dimensional rank-4 horizontal

sublattice in the plane perpendicular to the unique vertical

eightfold axis. The horizontal sublattice can be generated by

four wavevectors b�1�; . . . ; b�4� of equal length, separated by

angles of �=4 (as shown in Fig. 1). Throughout the paper, we

denote horizontal generating vectors and their negatives by

b�i�, where the index i is taken modulo 8, and b�i� � ÿb�iÿ4� if

i � 5; 6; 7 or 8.

If the ®fth generating vector cÐwhich must be out of the

horizontal planeÐis parallel to the eightfold axis, the lattice is

called a vertical lattice or V lattice (also called a primitive or P

lattice). In this case, we write c � z, to emphasize that it is

parallel to the eightfold axis, and call c a vertical stacking

vector, since the V lattice can be viewed as a vertical stacking

of horizontal planes containing two-dimensional rank-4

octagonal lattices.

If the ®fth generating vector c contains both a vertical

component z and a nonzero horizontal component h, then it is

called a staggered stacking vector, and the lattice is called a

staggered lattice, or S lattice. One can show (Mermin et al.,

1990) that to within a rotation of the lattice, or the addition of

a horizontal lattice vector, the horizontal shift can be taken to

have the form

h � 1
2 �b�1� � b�2� � b�3� ÿ b�4��: �2�

As shown in Fig. 1, h lies halfway between the generating

vectors b�1� and b�2�. Both lattice types are periodic along the

vertical axisÐwith a period of one layer for V lattices and two

layers for S lattices.

2.2. Three-dimensional octagonal point groups and their
generators

There are seven octagonal point groups (geometric crystal

classes) in three dimensions, one of which (�8m2) has two

distinct orientations with respect to both types of octagonal

lattices, giving rise to the eight octagonal arithmetic crystal

classes, listed in the ®rst column of Table 1. The point-group

generators, listed in the second column of the table, are an

eightfold rotation r8, an eightfold roto-inversion �r8 � ir8

(where i is the three-dimensional inversion), a horizontal

mirror h whose invariant plane is perpendicular to the eight-

fold axis, a vertical mirror m whose invariant plane includes

the eightfold axis, and a twofold (dihedral) axis d perpendi-

cular to the eightfold axis. The effects of these point-group

operations on the generating vectors of the two lattice types

are summarized in Table 2.

As shown in Fig. 1, the invariant planes of the vertical

mirrors and the axes of the twofold rotations can be oriented

either along (labeled m and d) or between (labeled m0 and d0)
the generating vectors of the octagonal horizontal sublattice

and their negatives. The point group �8m2 has four mirrors and

four twofold axes. If the mirrors are of type m (along the star

vectors) and the dihedral axes are of type d0 (between them), it

is denoted by �8m2. If the mirrors are of type m0 (between the

star vectors) and the dihedral axes are of type d (along the star

vectors), the point group is denoted by �82m.

Figure 1
The eightfold star containing the horizontal generating vectors and their
negatives �b�1�; . . . ;�b�4� is given by solid arrows. The horizontal shift h
[equation (2)] of the staggered stacking vector is denoted by a dashed
arrow. The dotted lines indicate the orientations of the two types of
vertical mirrors and dihedral axes, as described in the text.

Table 1
Three-dimensional octagonal point groups.

There are seven octagonal point groups (geometric crystal classes) in three
dimensions, one of which (�8m2) has two distinct orientations with respect to
both types of octagonal lattices, giving the eight octagonal arithmetic crystal
classes, listed in the ®rst column. The set of generators for each point group,
used throughout the paper, are listed in the second column along with the
symbols used to denote the spin-space operations with which they are paired
in the spin point groups.

Point group Generators

8 �r8; ��
�8 ��r8; ��
8mm �r8; ��; �m; ��
�8m2 ��r8; ��; �m; ��
822 �r8; ��; �d; ��
�82m ��r8; ��; �d; ��
8=m �r8; ��; �h; ��
8=mmm �r8; ��; �m; ��; �h; ��

Table 2
Effect of the point-group generators on the lattice-generating vectors.

The horizontal shift h associated with the staggered stacking vector is de®ned
in equation (2).

b�1� b�2� b�3� b�4� z z� h

r8 b�2� b�3� b�4� ÿb�1� z �z� h� � b�4�

�r8 ÿb�2� ÿb�3� ÿb�4� b�1� ÿz ÿ�z� h� ÿ b�4�

m b�1� ÿb�4� ÿb�3� ÿb�2� z �z� h� ÿ b�3�

d b�1� ÿb�4� ÿb�3� ÿb�2� ÿz ÿ�z� h� � 2hÿ b�3�

h b�1� b�2� b�3� b�4� ÿz ÿ�z� h� � 2h



3. Enumeration of spin point groups

As generators of the spin point group GS, we take the

generators of the point group G and combine each one with a

representative spin-space operation from the coset of ÿe with

which it is paired, as listed in the second column of Table 1.

The spin-space operation paired in the spin point group with

the eightfold generator r8 or �r8 is denoted by �, the operation

paired with the vertical mirror m by �, the operation paired

with the horizontal mirror h by � and the spin-space operation

paired with the dihedral rotation d is denoted by �. To these

generators, we add as many generators of the form �e; i� as

required, where i are the generators of ÿe (three at the most).

We begin by listing in Table 3 all the normal subgroups G"

of the seven octagonal point groups, along with the resulting

quotient groups G=G". The constraints on the operations �, �,

�, and � owing to the isomorphism between G=G" and ÿ=ÿe

are summarized in the last column of Table 3. The actual

identi®cation of these spin-space operations is done at the last

step of the enumeration process, as described in x7.
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Table 3
Normal subgroups G" of the seven octagonal point groups.

The resulting quotient group G=G" is represented in the seventh column by a point group isomorphic to it. Isomorphic groups G are listed in the same section of
the table. Constraints on the spin-space operations �, �, � and �, paired with the generators r8, m, d and h of G are listed in the last column. In each line, the ®rst
power of � that is in ÿe is given. �2, �2 and �2 are always in ÿe, therefore we only note whether�, � and � are themselves in ÿe. If a spin-space operation is in ÿe, it is
taken to be ".

G G" G G" G G" G=G" Constraints

8 8 �8 �8 1 � � "
4 4 2 �2 2 ÿe

2 2 4 �4 2 ÿe

1 1 8 �8 2 ÿe

8mm 8mm 822 822 �8m2 �8m2 1 � � "; � � "
8 8 �8 2 � � "; � =2 ÿe

4mm 422 4mm 2 �2 2 ÿe; � � "
4m0m0 42020 42020 2 � � � =2 ÿe

4 4 4 222 �2 2 ÿe; � =2 ÿe; �ÿe 6� �ÿe

2 2 2 422 �4 2 ÿe; � =2 ÿe; �
2ÿe 6� �ÿe

1 1 1 822 �8 2 ÿe; � =2 ÿe; �
4ÿe 6� �ÿe

8=m 8=m 1 � � "; � � "
8 2 � � "; � =2 ÿe

�8 2 � � � =2 ÿe

4=m 2 �2 2 ÿe; � � "
4 2=m �2 2 ÿe; � =2 ÿe; � =2 �ÿe

�4 4 �4 2 ÿe; � 2 �2ÿe

2=m 4 �4 2 ÿe; � � "
2 4=m �4 2 ÿe; � =2 ÿe; � =2 �2ÿe

m 8 �8 2 ÿe; � � "
�1 8 �8 2 ÿe; � 2 �4ÿe

1 8=m �8 2 ÿe; � =2 ÿe; � =2 �4ÿe

8=mmm 8=mmm 1 � � � � � � "
8mm 2 � � � � "; � =2 ÿe

822 2 � � "; � � � =2 ÿe

8=m 2 � � � � "; � =2 ÿe

�8m2 2 � � � =2 ÿe; � � "
�82m 2 � � � � � =2 ÿe

4=mmm 2 �2 2 ÿe; � � � � "
4=mm0m0 2 � � � =2 ÿe; � � "
8 222 � � "; � =2 ÿe; � =2 ÿe; � =2 �ÿe

�8 222 � � � =2 ÿe; � =2 ÿe; � =2 �ÿe

4mm 222 �2 2 ÿe; � � "; � =2 ÿe; � =2 �ÿe

4m0m0 222 � � � =2 ÿe; � =2 ÿe; � =2 �ÿe

422 222 �2 2 ÿe; � � � =2 ÿe; � =2 �ÿe

42020 222 �2 2 ÿe; � =2 ÿe; � =2 ÿe; � 2 ��ÿe

4=m 222 �2 2 ÿe;m =2 ÿe;m =2 �ÿe; � � "
4 mmm �2 2 ÿe; � =2 ÿe; � =2 ÿe; �ÿe 6� �ÿe 6� �ÿe

�4 422 �4 2 ÿe; � =2 ÿe; � =2 �ÿe; � 2 �2ÿe

2=m 422 �4 2 ÿe; � =2 ÿe; � =2 �ÿe; � � "
2 4=mmm �4 2 ÿe; � =2 ÿe; � =2 ÿe; �

2ÿe 6� �ÿe 6� �ÿe

m 822 �8 2 ÿe; � =2 ÿe; � =2 �4ÿe; � � "
�1 822 �8 2 ÿe; � =2 ÿe; � =2 �4ÿe; � 2 �4ÿe

1 8=mmm �8 2 ÿe; � =2 ÿe; � =2 ÿe; �
4ÿe 6� �ÿe 6� �ÿe
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4. Phase functions of Ce

We calculate the phase functions �
e �k�, associated with

elements in the lattice spin group ÿeÐkeeping in mind that ÿe

is abelian and that no two phase functions �
e �k� are iden-

ticalÐby ®nding the solutions to the constraints imposed on

these phase functions by all the other elements � 2 ÿ,

8 2 ÿe; �g; �� 2 GS : �
e �k� � ���ÿ1

e �gk�; �3�
by applying the group compatibility condition (1) to the

relation gegÿ1 � e, where g is one of the point-group

generators r8, �r8, m, h and d. In this way, we also ®nd the

possible combinations of ÿ and ÿe that are compatible with a

given lattice L and point group G. In all that follows, we write

�
g �b�i�� � abcd instead of fully writing �

g �b�1�� � a,

�
g �b�2�� � b, �

g �b�3�� � c and �
g �b�4�� � d; we write

�
g �b�i�c� � abcde to indicate in addition that �

g �c� � e; and

occasionally, if the four phases on the horizontal generating

vectors are equal to a, we write �
g �b�i�� � a or �

g �b�i�c� � ae.

Before starting, we note from inspection of Table 3 that no

quotient group G=G" contains an operation of order 3. This

implies, among other things, that ÿ=ÿe cannot contain such an

operation and therefore that ÿ cannot be cubic. This then

implies that, for any possible combination of ÿ and ÿe,

8 2 ÿe; � 2 ÿ : �2�ÿ2 � : �4�
This relation, together with equation (3) for � � �2, yields the

following basic result:

R0. For any  2 ÿe, the in-plane phases of �
e are

�
e �b�i�� � abab V lattice,

aaaa S lattice,

�
�5�

where a and b are independently either 0 or 1=2.

Proof

Let g8 denote the eightfold generator (r8 or �r8) and recall

that � 2 ÿ denotes the operation paired with it in the spin

point group. It follows from relation (4) together with equa-

tion (3) that

�
e �b�i�� � ��2�ÿ2

e �g2
8b�i�� � �

e �g2
8b�i��: �6�

Thus, for any  2 ÿe,

�
e �b�1�� � �

e �b�3�� � a; �
e �b�2�� � �

e �b�4�� � b; �7�
and

�
e �ÿb�i�� � �

e �b�i�� �)�
e �b�i�� � 0 or 1

2: �8�
The last result (owing to the linearity of the phase function)

implies that each of the phases a and b in (7) can be either 0 or

1=2. No further constraints arise from application of (3) to the

vertical stacking vector. On the other hand, for the staggered

stacking vector, using the fact (Table 2) that g2
8�z� h� �

�z� h� � b�4� ÿ b�1�, we obtain

�
e �z� h� � �

e �z� h� � bÿ a; �9�
implying that a � b. tu

Note that as a consequence of R0 along with the fact that

for twofold operations all phases are either 0 or 1=2, and the

fact that no two phase functions �
e can be the sameÐon S

lattices there can be no more than three operations of order 2

in ÿe.

Relation (4) implies that one of three conditions must be

satis®ed:

1. ��ÿ1 � , or simply � and  commute.

2. ��ÿ1 � ÿ1, where ÿ1 6� . This may happen if  is an

n-fold rotation (n> 2), possibly followed by time-inver-

sion, and � is a perpendicular twofold rotation.

3.  is one of a pair of operations in ÿe satisfying ��ÿ1 �  0
and � 0�ÿ1 � . This may happen if the two operations

are 2�x and 2�y, or 20�x and 20�y, and � is either a fourfold

rotation about the �z axis or a twofold rotation about the

plane diagonal.

We shall use relation (4), and the three possibilities for

satisfying it, in order to calculate the constraints imposed on

�
e �k� by the spin-space operations, paired with the generators

of the different octagonal point groups. In the following

subsections, we quote the results of these calculations. The

proofs can be found in Appendix A.

4.1. Additional constraints imposed by d (all point groups)

In addition to result R0, we ®nd that

R1. For any  2 ÿe, if � commutes with  (��ÿ1 � ) and

the eightfold generator is r8, then the in-plane phases of �
e are

�
e �b�i�� � aaaa V lattice,

0000 S lattice,

�
�10�

where a is either 0 or 1=2.

If the eightfold generator is �r8, the in-plane phases of �
e are

�
e �b�i�� � aaaa �11a�

regardless of the lattice type, and the phase on the stacking

vector is

�
e �c� �

c V lattice,
a
2� c S lattice,

�
�11b�

where a is the in-plane phase in (11a), c � 0 or 1=2, but a and c

cannot both be 0. As a consequence, on vertical lattices,  is an

operation of order 2 and, on staggered lattices,  is of order 2

or 4 depending on whether a � 0 or 1=2.

R2. If  2 ÿe is an operation of order n> 2, ��ÿ1 � ÿ1

and the eightfold generator is r8, then the lattice must be

staggered, n must be 4 and the phases of �
e are

�
e �b�i�� � 1

2
1
2

1
2

1
2; �

e �z� h� � 1
4 or 3

4 : �12�
If the eightfold generator is �r8, the in-plane phases of �

e are

�
e �b�i�� � aaaa V lattice,

0000 S lattice,

�
�13�

where a is either 0 or 1=2.

R3. If 2��x; 2��y 2 ÿe, where the asterisk denotes an optional

prime, and �2��x�
ÿ1 � 2��y , the directions of the �x and �y axes in

spin space can be chosen so that the in-plane phases of �
2�

�x
e

and �
2�

�y
e are



�
2�

�x
e �b�i�� � 0 1

2 0 1
2; �

2�
�y

e �b�i�� � 1
2 0 1

2 0 V lattice,

�
2�

�x
e �b�i�� � �

2�
�y

e �b�i�� � 1
2

1
2

1
2

1
2 S lattice,

(
�14a�

and the phases on the stacking vector are

�
2�

�x
e �z� � �

2�
�y

e �z� � 0 or 1
2 V lattice,

�
2�

�x
e �z� h� � 0; �

2�
�y

e �z� h� � 1
2 S lattice.

(
�14b�

4.2. Constraints imposed by l (point groups 8mm, �8�8m2 and
8=mmm)

M1. For any  2 ÿe, if � commutes with , the in-plane

phases of �
e are

�
e �b�i�� � abab V lattice,

0000 S lattice,

�
�15�

where a and b are independently either 0 or 1=2.

M2. If  2 ÿe is an operation of order n> 2 and

��ÿ1 � ÿ1, then the lattice must be staggered, n must be 4

and the phases of �
e are

�
e �b�i�� � 1

2
1
2

1
2

1
2; �

e �z� h� � 1
4 or 3

4 : �16�

M3. If 2��x; 2��y 2 ÿe, where the asterisk denotes an optional

prime, �2��x�
ÿ1 � 2��y and the mirror is of type m, then the

lattice must be staggered, the in-plane phases of �
2�

�x
e and �

2�
�y

e

are

�
2�

�x
e �b�i�� � �

2�
�y

e �b�i�� � 1
2

1
2

1
2

1
2; �17a�

and the directions of the �x and �y axes in spin space can be

chosen so that the phases on the staggered stacking vector are

�
2�

�x
e �z� h� � 0; �

2�
�y

e �z� h� � 1
2: �17b�

4.3. Constraints imposed by a (point groups 822 and �8�82m)

D1. For any  2 ÿe, if � commutes with , the in-plane

phases are the general ones given in result R0 [equation (5)].

If the lattice is vertical, the phase of �
e �z� is independently 0

or 1=2, implying that  is an operation of order 2. If the lattice

is staggered, the phase on the stacking vector is

�
e �z� h� � a

2� c; �18�
where a is the in-plane phase in (5) and c � 0 or 1=2 but a and

c cannot both be 0. Consequently,  is an operation of order 2

or 4, depending on whether a � 0 or 1=2.

D2. If  2 ÿe is an operation of order n> 2, ��ÿ1 � ÿ1

and the lattice is vertical, there are no additional constraints

on the phase function �
e . If the lattice is staggered, then the

in-plane phases of �
e are all 0.

D3. If 2��x; 2��y 2 ÿe, where the asterisk denotes an optional

prime, and �2��x�
ÿ1 � 2��y , then the lattice must be staggered,

the in-plane phases of �
2�

�x
e and �

2�
�y

e are

�
2�

�x
e �b�i�� � �

2�
�y

e �b�i�� � 1
2

1
2

1
2

1
2; �19�

and the directions of the �x and �y axes in spin space can be

chosen so that the phases on the staggered stacking vector are

�
2�

�x
e �c� � 0; �

2�
�y

e �c� � 1
2: �20�

4.4. Constraints imposed by g (point groups 8=m and
8=mmm)

H1. For any  2 ÿe, if � commutes with , then the phase of

�
e on the stacking vector is

�
e �c� � 0 or 1

2; �21�
which implies that  is an operation of order 2.

H2. If  2 ÿe is an operation of order n> 2 and

��ÿ1 � ÿ1, there are no additional constraints on the phase

function �
e .

H3. If 2��x; 2��y 2 ÿe, where the asterisk denotes an optional

prime, then they must both commute with � and their phase

functions are only constrained by results R0 and H1.

4.5. Enumeration of lattice spin groups Ce

We shall now use the results of the previous sections to

enumerate the lattice spin groups and calculate their phase

functions. We also introduce a notationÐto be used in the

®nal spin-space-group symbolÐthat encodes the values of

these phase functions. In this notation, the symbol of the

lattice spin group ÿe is added as a superscript over the lattice

symbol (unless ÿe is 1 or 10). In addition, for each spin-space

operation  in the symbol for ÿe (with one exception when

these operations are 2��x and 2��y , as noted below), we add a

subscript to the lattice symbol describing the sublattice L,

de®ned by all wavevectors k for which �
e �k� � 0, with an

additional index whenever this sublattice does not uniquely

describe the phase function. The results of this section are

summarized in the left-hand sides of Tables 8±11 and in the

headings of Table 12.

There are a few cases in which the zeros of the phase

functions, associated with the operations 2��x and 2��y , de®ne a

pair of rank-5 tetragonal sublattices related by an eightfold

rotation. Each wavevector in these tetragonal sublattices can

be decomposed into the sum of two vectors, one belonging to a

three-dimensional rank-3 tetragonal lattice of type P or I, and

the second belonging to a two-dimensional rank-2 square

lattice. If the squares of the rank-2 lattice are aligned along the

same directions as the squares of the rank-3 lattice, then we

denote the combined rank-5 lattice by P� p or I � p; if they

are aligned along the diagonals of the rank-3 lattice, we denote

the combined rank-5 lattice by P� p (a lattice that does not

occur here) or I � p. This is somewhat of an ad hoc notation

for some of the rank-5 tetragonal lattices as compared, for

example, with the notation used by Lifshitz & Mermin (1994)

in their enumeration of the analogous hexagonal and trigonal

lattices of arbitrary ®nite rank. Nevertheless, it is more

compact and suf®cient for our current purpose. Since the pair

of sublattices, associated with the operations 2��x and 2��y , are
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identical (to within an eightfold rotation), and the different

assignments of the two sublattices to the two operations are

scale equivalent, we denote their symbol only once.

4.5.1. Ce � 1. The trivial lattice spin group is always

possible. In this case, every operation in G is paired with a

single operation in ÿ. The lattice symbol remains the same as

for nonmagnetic space groups: P for vertical lattices and S for

staggered lattices.

4.5.2. Ce � 2, 2000, 1000. Let  denote the single generator (2, 20

or "0) of ÿe. Since  commutes with all elements of ÿ, we can

infer the possible values of the phase function �
e from results

R1, M1, D1 and H1. We ®nd that for all point groups G

�
e �b�i�c� � 0 1

2; 1
2 0; or 1

2
1
2 V lattice,

0 1
2 S lattice.

�
�22�

Because  is an operation of order 2, the zeros of its phase

function de®ne a sublattice of index 2 in L. Let us express an

arbitrary wavevector in L as k �P4
i�1 nib

�i� � lc. The zeros of

the ®rst solution �
e �b�i�c� � 0 1

2 de®ne a vertical octagonal

sublattice, containing all wavevectors with even l, or simply all

the even layers of L, whether L is a V lattice or an S lattice.

This solution is denoted on the two lattice types by P

2c and S


P,

respectively. The second solution �
e �b�i�c� � 1

2 0 on the V

lattice de®nes a vertical octagonal sublattice, containing all

vectors with even
P

i ni and is denoted by P

P. The third

solution �
e �b�i�c� � 1

2
1
2 on the V lattice de®nes a staggered

octagonal sublattice, containing all vectors with evenP
i ni � l, and is denoted by P


S. If  � "0, it is omitted from the

symbols, yielding the same symbols used for the so-called

magnetic (or black-and-white) space groups (Lifshitz, 1997).

The possible phase functions for ÿe � 2; 20; 10 are summarized

in the left-hand side of Table 8.

4.5.3. Ce � 21000. Here, ÿe contains three operations of order

2 that commute with all the elements of ÿ. For V lattices, there

are 3! � 6 distinct ways of assigning the three different solu-

tions (22) to the three phase functions of these operations.

These are denoted by P210
2c;P, P210

P;S, P210
S;2c, P210

P;2c, P210
S;P and P210

2c;S,

where the ®rst subscript denotes the sublattice de®ned by the

phase function �2
e and the second subscript denotes that of

�"0
e . These solutions are summarized in the left-hand side of

Table 9.

For S lattices, ÿe cannot be 210 because there is only one

solution in (22), and therefore there can be only one operation

in ÿe that commutes with all elements of ÿ.

4.5.4. Ce � 222, 200020002. We generate ÿe by 2��x (2�x or 20�x) and

2��y (2�y or 20�y), noting that in the case of ÿe � 20202 the unprimed

twofold rotation de®nes the direction of the �z axis in spin

space. For vertical lattices, we see from results M3, D3 and H3

that the operations �, � and �, paired with m, d and h if they

are in the point group, must all commute with 2��x and 2��y . It only

remains to check whether �, paired with the eightfold

generator, commutes with the generators of ÿe.

If � commutes with 2��x and 2��y , then again, as in the previous

section, we have three operations in ÿe that commute with all

the elements of ÿ, implying that ÿ is orthorhombic and not

tetragonal. The difference between this case and that of the

previous section is that here different solutions can be related

by scale transformations that reorient the directions of the

spin-space axes. For ÿe � 222, all three operations are

equivalent so we can de®ne the directions of the spin-space

axes such that

�2�x
e �b�i�c� � 0 1

2; �
2�y
e �b�i�c� � 1

2 0; �
2�z
e �b�i�c� � 1

2
1
2 �23�

and denote the lattice spin group and its associated phase

functions by P222
2c;P;S. Any permutation of the three subscripts in

the symbol yields an alternative setting for the same scale-

equivalence class of solutions.

For ÿe � 20202, only the two primed rotations are equiva-

lent, so we have three distinct solutions, where we choose the

directions of the �x and �y axes in spin space such that the phase

function associated with 20�y is 1=2 on the horizontal generating

vectors. These solutions are

1: �
20

�x
e �b�i�c� � 0 1

2; �
20

�y
e �b�i�c� � 1

2 0; �
2�z
e �b�i�c� � 1

2
1
2;

2: �
20

�x
e �b�i�c� � 0 1

2; �
20

�y
e �b�i�c� � 1

2
1
2; �

2�z
e �b�i�c� � 1

2 0;

3: �
20

�x
e �b�i�c� � 1

2 0; �
20

�y
e �b�i�c� � 1

2
1
2; �

2�z
e �b�i�c� � 0 1

2:

�24�
These three solutions are denoted by P20202

2c;P;S, P20202
2c;S;P and P20202

P;S;2c,

respectively. Their scale-equivalent forms are obtained by

exchanging the ®rst two subscripts: P20202
P;2c;S, P20202

S;2c;P and P20202
S;P;2c.

If � is a fourfold rotation or a twofold diagonal rotation

(requiring ÿ to be tetragonal) such that �2��x�
ÿ1 � 2��y , then

according to result R3 there are two solutions for the phase

functions:

�
2�

�x
e �b�i�c� � 0 1

2 0 1
2 c; �

2�
�y

e �b�i�c� � 1
2 0 1

2 0c; c � 0 or 1
2:

�25�
These are interesting solutions in which the horizontal planes

of the sublattices, de®ned by the zeros of the phase functions

associated with the operations 2��x and 2��y , contain all vectors

k �P4
i�1 nib

�i� � lc from L with even n2 � n4 and even

n1 � n3, respectively, with both parities being odd if c � 1=2

whenever l is also odd. Consequently, the two sublattices are

not octagonal but rather a pair of tetragonal lattices of rank 5,

related to each other by an eightfold rotation. As described in

the introduction to this section, we denote the lattice spin

groups in this case by P2�2�2
P�p;P (c � 0) and P2�2�2

I�p;P (c � 1=2).

Note that in both cases the sublattice de®ned by the zeros of

the phase function of 2�z is an octagonal V lattice with a

thinned-out horizontal plane.

All these solutions on the V lattice are valid for all octag-

onal point groups because other generators of ÿ, if they exist,

impose no further restrictions on the phase functions above.

On staggered lattices (from results R1, M1 and D1), only a

single twofold operation can commute with �, � or � which are

paired with the eightfold generator, the mirror m and the

dihedral rotation d, respectively. These operations therefore

necessarily exchange the two generators of ÿe, requiring ÿ to

be tetragonal. On the other hand (from result H3), � which is

paired with h necessarily commutes with the two generators of

ÿe. If these conditions are satis®ed then for all point groups



the directions of the �x and �y axes in spin space can be chosen

so that there is a single solution for the phase functions,

�
2�

�x
e �b�i�c� � 1

2 0; �
2�

�y
e �b�i�c� � 1

2
1
2: �26�

The sublattices de®ned by the zeros of these two phase

functions are rank-5 tetragonal lattices of type I � p. One has

the rank-3 I lattice oriented in the directions of the x and y

axes and the other has the rank-3 I lattice oriented along the

diagonal directions. The sublattice de®ned by the zeros of the

phase function of 2�z is an octagonal V lattice. The lattice spin

group is therefore denoted by S2�2�2
I�p;P.

The possible phase functions for ÿe � 222; 20202 are

summarized in the left-hand side of Table 10.

4.5.5. Ce � 200020002000 � 2221000. We choose to generate ÿe using

the three primed rotations and note that, since ÿe has three

twofold operations (2�z, 20�z and "0) that commute with all

elements of ÿ, the lattice must be vertical. Furthermore, since

there can be no more than three operations that commute with

�, all other twofold operations in ÿe � 202020, including the two

generators 20�x and 20�y, cannot commute with � (requiring ÿ to

be tetragonal). The operations �, � and � must commute with

all operations in ÿe.

If all these conditions are satis®ed, then the phase functions

for 20�x and 20�y have the same two solutions given in equation

(25) for ÿe � 20202. In both of these solutions, �
2�z
e �b�i�c� � 1

2 0.

This leaves two possibilities for the phase function of the third

generator of ÿe,

�
20

�z
e �b�i�c� � 0 1

2 or 1
2

1
2; �27�

giving a total of four distinct solutions for the phase functions

of ÿe � 202020 on the V lattice, denoted by P202020
P�p;2c, P202020

P�p;S,

P202020
I�p;2c and P202020

I�p;S (and none on the S lattice). These solutions

are summarized in the left-hand side of Table 11.

4.5.6. Ce � n, n000, n1000 (n > 2). These lattice spin groups

contain a single generator  of order N> 2, where N � n

unless ÿe � n0 and n is odd, in which case N � 2n. Note that if

n is odd then n10 need not be considered because it is the same

as n0. For operations of order N, it follows from the group

compatibility condition (1) that

�N

e �k� � N�
e �k� � 0�)�

e �k� � j
n ; j � 0; 1; . . . ;N ÿ 1:

�28�
For vertical lattices, we ®nd from result R2 that, if the

eightfold generator is r8, then �, paired with it, must commute

with  and, if it is �r8, then � must be a perpendicular twofold

rotation taking  to ÿ1. Furthermore, we ®nd from results

M2, D2 and H2 that � (paired with m) must commute with ,

and � and � (paired with d and h) must both be perpendicular

twofold rotations. If these conditions are satis®ed whenever

these operations are in the point group, then

�
e �b�i�� � aaaa N even,

0000 N odd,

�
�29�

where a is either 0 or 1=2. The only constraint on the phase

�
e �z� comes from the requirement that  is an operation of

order N. If the in-plane phases are 0 then �
e �z� � j=N, where j

and N must be co-prime, otherwise the true denominator is

smaller than N, and consequently the order of  is smaller

than N. If the in-plane phase a � 1=2 and N is twice an even

number, then j and N must still be co-prime, but if N is twice

an odd number then j may also be even and  would still be an

operation of order N. This is so because, even though the

phase of N=2 is zero on the stacking vector, it is 1=2 on the

horizontal generating vector and therefore N=2 6� ".
To summarize, for ÿe � n (odd or even n) or ÿe � n0; n10

(even n), the possible solutions for the phase function �
n�

�z
e are

�
n�

�z
e �b�i�c� �

0 j
n n odd,

0 j
n; 1

2
j
n n twice even,

0 j
n; 1

2
j
n; 1

2
2j
n n twice odd,

8<: �30�

where in all cases j and n are co-prime. The ®rst subscript in

the symbols for the three distinct solutions for �
n�

�z
e are njc for

�
n�

�z
e �b�i�c� � 0 j

n, njS for �
n�

�z
e �b�i�c� � 1

2
j
n and �n2�jP for

�
n�

�z
e �b�i�c� � 1

2
2j
n . The index j is necessary here because the

sublattices de®ned by the zeros of these phase functions do

not depend on j, and therefore it must be speci®ed in addition

to specifying the sublattice symbol.

For ÿe � n0 with odd n, the order of the generator is 2n and

the possible solutions are

�
n0

�z
e �b�i�c� � 0 j

2n; 1
2

j
2n; 1

2
j
n n odd; �31�

where j and 2n are co-prime. The symbols for these three types

of lattice spin group are Pn0
�2n�jc, Pn0

�2n�jS and Pn0
njP

. Finally, for

ÿe � n10 (n necessarily even), we need to ®nd the possible

solutions for the phase function associated with the second

generator "0. Since the phase function �
2�z
e is determined by the

phase function �
n�z
e , we are left with only two possible solu-

tions for the phase function �"0
e . If n is twice even then we

always have

�"0
e �b�i�c� � 1

2 0 or 1
2

1
2; �32�

thus obtaining a total of four solutions denoted Pn10
njc;P

, Pn10
njc;S

,

Pn10
njS;P

and Pn10
njS;S

. If n is twice odd then the possible solutions

depend on �
n�z
e as follows:

�"0
e �b�i�c� �

1
2 0 or 1

2
1
2 �

n�
�z

e �b�i�c� � 0 j
n,

0 1
2 or 1

2 0 �
n�

�z
e �b�i�c� � 1

2
j
n,

1
2

1
2 or 0 1

2 �
n�

�z
e �b�i�c� � 1

2
2j
n ,

8><>: �33�

giving a total of six solutions denoted by Pn10
njc;P

, Pn10
njc;S

, Pn10
njS;2c,

Pn10
njS;P

, Pn10
�n=2�jP;S and Pn10

�n=2�jP;2c.

On staggered lattices, we ®rst note that ÿe cannot be n10

which contains three operations of order 2 that commute with

all the elements of ÿ. Furthermore, we ®nd from the results of

the previous sections that � (paired with h if it is in G) must be

a twofold rotation perpendicular to the axis of  and that two

possibilities exist for the remaining generators of ÿ:

(i) If the eightfold generator is r8, then �, paired with it, must

commute with  and, if it is �r8, then � must be a perpendicular

twofold rotation taking  to ÿ1. The operation � (paired with

m) must commute with  and � (paired with d) must be a

perpendicular twofold rotation. If these conditions are satis-

®ed whenever these operations are in G, then the in-plane
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phases are all 0. For ÿe � n (either parity) and ÿe � n0 (even

n), the possible solutions for the phase function �
n�

�z
e are

therefore

�
n�

�z
e �b�i�c� � 0 j

n ; �34�
where j and n are co-prime. These are denoted by Sn�

njc
. For

ÿe � n0 with odd n, the order of the generator is 2n and the

possible solutions are

�
n0

�z
e �b�i�c� � 0 j

2n ; �35�
where j and 2n are co-prime. These are denoted by Sn0

�2n�jc.
(ii) If the eightfold generator is �r8 then �, paired with it,

must commute with  and, if it is r8, then � must be a

perpendicular twofold rotation taking  to ÿ1. The operation

� (paired with d) must commute with  and � (paired with m)

must be a perpendicular twofold rotation. If these conditions

are satis®ed whenever these operations are in G, then n � 4

and the possible solutions for the phase function �
4��z
e are

�
4�

�z
e �b�i�c� � 1

2
1
4 or 1

2
3
4 ; �36�

denoted by S4�
41S and S4�

43S

The possible phase functions for ÿe � n; n0; n10 �n> 2� are

summarized in the headings of Table 12.

5. Initial choice of gauge

Before starting the actual calculation of phase functions for

the generators of the different octagonal point groups, we

make an initial choice of gauge that (i) sets the phases ��
g8
�b�i��

to zero, where g8 is the eightfold generatorÐr8 for point

groups 8, 8mm, 822, 8=m and 8=mmm, or �r8 for �8, �8m2 and
�82m; and (ii) sets the phase ��

g �c� to zero for one generator

satisfying gz � ÿz.

5.1. Setting ��
g8
�b�i����

g8
�b�i�� to zero

We can make ��
g8
�b�i�� � 0 with a gauge transformation

given by

�1�b�i�� � 1
2 ��

g8
�b�i� � b�i�1� � b�i�2� � b�i�3��; �37�

where the upper signs are for g8 � r8 and the lower signs for

g8 � �r8, and the value of �1�c� is unimportant. Using this gauge

function, we obtain

���
g8
�b�i�� � �1�g8b�i� ÿ b�i��
� �1��b�i�1� ÿ b�i��
� 1

2 ��
g8
�b�i�4� ÿ b�i��

� ÿ��
g8
�b�i��; �38�

thereby setting ��
g8
�b�i�� to zero.

5.2. Setting ��
g �c���
g �c� to zero when gz = ÿz

We apply a second gauge transformation to set ��
g �c� to

zero for a single g 2 G for which gz � ÿz. We use this

transformation for the operation �r8 when G is �8, �82m or �8m2,

and for the operations d when G is 822 and h when G is 8=m or

8=mmm. For both lattice types, we take

�2�b�i�� � 0; �2�c� � 1
2 ��

g �c�; �39�
from which we get, for vertical lattices,

���
g �z� � �2�gzÿ z� � �2�ÿ2z� � ÿ��

g �z� �40�
and for staggered lattices

���
g �z� h� � �2�g�z� h� ÿ �z� h��

� �2 �ÿ2�z� h� � �gh� h�� �
� ÿ��

g �z� h�; �41�
where the last equivalence is because the vector gh� h is in

the horizontal plane where �2 is zero. Also note that since �2 is

zero on the horizontal sublattice it does not affect the phases

that were set to zero in the previous section.

5.3. Remaining gauge freedom

We still remain with some freedom to perform a third gauge

transformation without undermining the effect of the previous

two gauge transformations. Such a transformation can be

performed with a gauge function �3 satisfying

���
g8
�b�i�� � �3�g8b�i� ÿ b�i�� � 0 �42�

and

���
g �c� � �3�gcÿ c� � 0; �43�

where g is the operation chosen in the previous section. The

®rst condition, for all point groups and both lattice types,

requires �3 to have the same value of 0 or 1=2 on all the

horizontal generating vectors. For point groups 8 and 8mm,

where the second gauge transformation �2 is not used, there is

no constraint on the value of �3�c�. For the remaining point

groups, we must consider the two lattice types separately. For

V lattices, gc in equation (43) is ÿc and therefore �3�c� � 0 or

1=2 independently of its value on the horizontal generating

vectors. Thus, on V lattices, one must check for gauge

equivalence of solutions to the group compatibility conditions

using the three non-trivial gauge functions

�3�b�i�c� � 0 1
2; 1

2 0; or 1
2

1
2: �44�

For S lattices, using Table 2 and the fact that �3�2h� � 0, we

®nd that we may still perform gauge transformations using the

gauge functions

�3�b�i�c� � 0 1
2; 1

2 0; or 1
2

1
2; G � 8=m; 8=mmm;

0 1
2; 1

2
1
4; or 1

2
3
4; G � �8; �8m2; �82m; 822.

�
�45�

6. Determination of phase functions for the different
octagonal point groups

Further calculations of phase functions are carried out for

each point group G separately, based on its speci®c generating

relations. Two typical relations appear in most of the point



groups. All twofold generators �g; �� 2 GS satisfy a generating

relation of the form g2 � e and therefore impose, through the

group compatibility condition (1), equations of the form

��2

e �k� � ��
g �gk� k�: �46�

In general, �2 may be different from " and therefore the phase

��2

e �k� is not necessarily zero. But note that for any � 2 ÿ the

operation �2 is either " or a pure rotation about the �z axis in

spin space, and therefore ��2

e �b�i�� � 0000 or 1
2

1
2

1
2

1
2.

Generating relations involving pairs of generators are of the

form ghg � h, where �g; �� and �h; �� are in GS. Application of

the group compatibility condition (1) to these generating

relations yields

����
h �k� � ����

ghg �k� � ��
g �k� hgk� ���

h�gk�: �47�
We expand the left-hand side by

����
h �k� � ���ÿ1���

h �k� � ��
h�k� ���ÿ1���

e �k� �48�
to obtain

��ÿ1���
e �k� � ��

g �k� hgk� ���
h�gkÿ k�: �49�

This last form, as well as equation (46) for the twofold

generators, emphasizes the fact that the new phase functions

that are yet to be determined may depend on the phase

functions �
e �k� that were calculated in x4. Note that �ÿ1��� is

the product of two conjugate operations in ÿ and is therefore

either the identity " or a pure rotation about the �z axis in spin

space, and therefore ��ÿ1���
e �b�i�� � 0000 or 1

2
1
2

1
2

1
2.

Owing to lack of space, detailed calculations leading to the

results of this section are given here only for the two point

groups 8 and 8mm as typical examples. Explicit tables,

summarizing the results of the calculations of this section, are

given here only for point group 8mm (Table 4 for V lattices

and Table 5 for S lattices). All other results and calculations

are given in Appendix B.

6.1. Point group G � 8 (generator r8)

The only phase to be determined is ��
r8
�c� because the in-

plane phases of ��
r8

were set to zero by the gauge transfor-

mation of x5.1. Successive applications of the group compat-

ibility condition to the generating relation r8
8 � e yield

��8

e �c� � ��
r8
�c� r8c� . . .� r7

8c�; �50�

where, in general, �8 may be different from " and therefore the

phase ��8

e �c� is not necessarily zero. For vertical lattices, c � z

and equation (50) becomes

��8

e �z� � 8��
r8
�z�; �51�

with gauge-invariant solutions of the form
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Table 4
Spin-space-group types on V lattices with G � 8mm.

All distinct combinations of phase functions are listed without explicitly identifying the spin-space operations � and �. For the sake of abbreviation, a, b, a0 and b0

each indicate phases that are either 0 or 1
2, as long as no two elements in ÿe have identical phase functions. For ÿe � n, n0 or n10, the integer j is co-prime with N,

where N � n unless ÿe � n0 and n is odd, in which case, N � 2n. If N is odd, a is necessarily 0. The integer d � 1 unless N is twice an odd number and �
n�

�z
e �b�i�� � 1

2,
in which case d � 1 or 2. A0 denotes the values 0 1

2 0 1
2 of a phase function on the horizontal generating vectors and A1 denotes the values 1

2 0 1
2 0 on the same vectors.

Lines 5a and 5b refer to distinct spin-space-group types if ÿe � 20202 but are scale equivalent if ÿe � 222 or 202020, for which line 5a suf®ces. â; b̂ and ~a denote
either 0 or 1

2. Spin-space-group symbols are of the form Pÿe��� 8
�m�m��, where the primary 8� is replaced by 8�4 if ~a � 1

2 and the secondary m� is replaced according to
the values of â and b̂: â � b̂ � 0) m� ! m�, â � 0; b̂ � 1

2) m� ! c�, â � 1
2; b̂ � 0) m� ! b�, â � b̂ � 1

2) m� ! n�. The tertiary m�� is replaced by c�� if
either b̂ or ~a (but not both) is 1

2. Furthermore, a subscript a is added to the secondary m� when ��
m�b�i�� � A0 � â. For example, if ÿe � 20202, G" � 4mm, ÿ � 202020,

then � can be chosen to be "0 and the spin space group is described by line 5a or 5b, if ab � 1
2 0, â � 1

2, b̂ � 1
2 and ~a � 0, the spin-space-group symbol will be

P20202
P;S;2c80nc0.

ÿe � 1; 10; 2; 20; 210 ��8 � "�
�ÿ1��� �2 �

2�
�z

e �b�i�c� �"0
e �b�i�c� ��

m�b�i�� ��
m�z� ��

r8
�z�

1 " " ab a0b0 â b̂ ~a

2 " 2�z 0 1
2

1
2 a â b̂ ~a

3 2�z " 0 1
2

1
2 a â b̂ ~a

1
2 a a0b0 â� A0 b̂ ~a� a

2

4 2�z 2�z 0 1
2

1
2 b â b̂� 1

4 ~a� 1
4

ÿe � 222; 20202; 202020 ��2�x�
ÿ1 � 2�x ) �2 � "�

�2�x�
ÿ1 �ÿ1��� �

2�
�x

e �b�i�c� �
2�

�y
e �b�i�c� �

20
�z

e �b�i�c� ��
m�b�i�� ��

m�z� ��
r8
�z�

5a 2�x " 0 1
2

1
2 0 ± â b̂ ~a

5b 2�x " ab 1
2

1
2 ± â b̂ ~a

6 2�y 2�z A0b A1b a 1
2 A0 � â b̂ ~a

ÿe � n; n0; n10 ��n�z�
ÿ1 � �n�z�

ÿ1 � n�z; �
8 � ��ÿ1����4�

�ÿ1��� �2 �
n�

�z
e �b�i�c� �"0

e �b�i�c� ��
m�b�i�� ��

m�z� ��
r8
�z�

7 " " a dj
N a0b0 â b̂ ~a

8 " n�z 0 j
n ab â b̂� j

2n ~a

9 n�z " 0 j
n ab â b̂ ~a� j

2n
1
2

dj
n ab â� A0 b̂ ~a� dj

2n

10 n�z n�z 0 j
n ab â b̂� j

2n ~a� j
2n
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��
r8
�z� � 1

8 ��8

e �z� � c
8 ; c � 0; . . . ; 7: �52�

For staggered lattices, c � z� h and equation (50) becomes

��8

e �z� h� � ��
r8
�8z� � 8��

r8
�z� h�; �53�

where the second equality follows from the fact that 8h is a

lattice vector in the horizontal plane for which ��
r8
�8h� � 0.

The solutions of equation (53) are

��
r8
�z� h� � 1

8 ��8

e �z� h� � c
8 ; c � 0; . . . ; 7; �54�

just as for the vertical stacking vector but, unlike the vertical

stacking vector, the phase ��
r8
�z� h� is not gauge invariant

because r8�z� h� 6� �z� h�. We need to check whether any of

the solutions are gauge equivalent through the remaining

gauge freedom given by one of the gauge functions (45).

Taking �3�b�i�� � 1=2 changes the phase ��
r8
�z� h� by

���
r8
�z� h� � �3�r8�z� h� ÿ �z� h�� � �3�b�4�� � 1

2: �55�
Therefore, on the S lattice two solutions differing by 1=2 are

gauge equivalent, so the distinct solutions are

��
r8
�z� h� � 1

8 ��8

e �z� h� � c0
8 ; c0 � 0; . . . ; 3: �56�

The phase functions for point group G � 8 are summarized

in Appendix B in Table B-1 for V lattices and Table B-2 for S

lattices.

6.2. Point group G � 8mm (generators r8 and m)

We need to determine the phase ��
r8
�c� and the phase

function ��
m�k�. We use the generating relations r8

8 � m2 � e

and r8mr8 � m, which impose equation (50) for the eightfold

generator, equation (46) for the twofold generator and

equation (49) for the additional generating relation

r8mr8 � m. We begin by noting that, if m is the mirror that

leaves b�1� invariant, then application of equation (46) to b�3�,
which is perpendicular to m (mb�3� � ÿb�3�), yields

��2

e �b�3�� � ��
m�mb�3� � b�3�� � 0; �57�

implying that ��2

e �b�i�� � 0000. Application of equation (46)

to b�1� then yields

0 � 2��
m�b�1�� �)��

m�b�1�� � 0 or 1
2; �58�

and application of equation (46) to b�2� and b�4� shows that

��
m�b�2�� � ��

m�b�4�� but provides no further information

regarding the actual values of these phases. Next, we apply

equation (49) to the horizontal generating vectors to obtain

��
m�b�i�1�� � ��

m�b�i�� ���ÿ1���
e �b�i��: �59�

Thus, the value of ��
m on b�1� determines the values of ��

m on

the remaining horizontal generating vectors through the phase

function ��ÿ1���
e :

��
m�b�i�� � 0000 or 1

2
1
2

1
2

1
2 if ��ÿ1���

e �b�i�� � 0000,

0 1
2 0 1

2 or 1
2 0 1

2 0 if ��ÿ1���
e �b�i�� � 1

2
1
2

1
2

1
2.

�
�60�

For the vertical stacking vector in V lattices, for which

mz � r8z � z, equation (51) remains unchanged, and equa-

tions (49) and (46) become

��ÿ1���
e �z� � 2��

r8
�z� �61a�

��2

e �z� � 2��
m�z�: �61b�

The solutions to these equations are

Table 5
Spin-space-group types on S lattices with G � 8mm.

All distinct combinations of phase functions are listed without explicitly identifying the spin-space operations � and �. For the sake of abbreviation, â and ~a denote
either 0 or 1

2. For ÿe � n or n0, the integer j is co-prime with N, where N � n unless ÿe � n0 and n is odd, in which case N � 2n. For any choice of spin-space
operations, ��ÿ1����4 � �8. Spin-space-group symbols are of the form Sÿe��� 8

�m�m��, where the primary 8� is replaced by 8�2 if â � 1
2 and the secondary m� is

replaced by d� if â � 1
2. The tertiary m�� is replaced by c�� if ~a � 1

2. A subscript a is added to the secondary m if ��
m�b�i�� � â� A0.

ÿe � 1; 10; 2; 20 ��8 � "�
�ÿ1��� �2 �

e �k� ��
m�b�i�� ��

m�z� h� ��
r8
�z� h�

1 " " 0 1
2 â ~a� 1

2 â 1
2 â

2 " 2�z 0 1
2 â ~a� 1

2 â� 1
4

1
2 â

3 2�z " 0 1
2 â ~a� 1

2 â 1
2 â� 1

4

4 2�z 2�z 0 1
2 â ~a� 1

2 â� 1
4

1
2 â� 1

4

ÿe � 222; 20202 ��2�x�
ÿ1 � 2�y ) �2 � 2�z�

�2�x�
ÿ1 �ÿ1��� �

2�
�x

e �b�i�c� �
2�

�y
e �b�i�c� ��

m�b�i�� ��
m�z� h� ��

r8
�z� h�

5 2�y 2�z
1
2 0 1

2
1
2 â ~a� 1

2 â� 1
4

1
2 â� 1

4

ÿe � n; n0 ��n�z�
ÿ1 � �n�z�

ÿ1�
�n�z�

ÿ1 �ÿ1��� �2 �8 �
n�

�z
e �b�i�c� ��

m�b�i�� ��
m�z� h� ��

r8
�z� h�

6 n�z " " " 0 j
n â ~a� 1

2 â 1
2 â

7 n�z " n�z " 0 j
n â ~a� 1

2 â� j
2n

1
2 â

8 n�z n�z " n4
�z 0 j

n â ~a� 1
2 â 1

2 â� j
2n

9 n�z n�z n�z n4
�z 0 j

n â ~a� 1
2 â� j

2n
1
2 â� j

2n

10 nÿ1
�z " " " 1

2
j
n �n � 4� â ~a� 1

2 â 1
2 â

11 nÿ1
�z nÿ1

�z " " 1
2

j
n �n � 4� â� A0 ~a� 1

2 â 1
2 �12ÿ â� ÿ j

8



��
r8
�z� � 1

2 ��ÿ1���
e �z� � a; �62a�

��
m�z� � 1

2 ��2

e �z� � b; �62b�
where a and b are independently 0 or 1=2.
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Table 6
Explicit list of octagonal spin-space-group types with G � 8mm on V
lattices.

The last column refers to line numbers in Table 4, where the possible phase
functions are listed and rules are given to generate the spin-space-group
symbol.

G" G=G" ÿ Generators Line

ÿe � 1

8mm 1 1 �r8; "��m; "� 1

8 m 2 �r8; "��m; 2�z� 1

20 �r8; "��m; 20�z� 1

10 �r8; "��m; "0� 1

4mm 2 2� �r8; 2��z��m; "� 1

10 �r8; "
0��m; "� 1

4m0m0 2 2� �r8; 2��z��m; 2��z� 1

10 �r8; "
0��m; "0� 1

4 2mm 2�2y2�y �r8; 2��z��m; 2
y
�x� 1

210 �r8; 2��z��m; "0� 1

�r8; "
0��m; 2��z� 1

�r8; 2��z��m; 20��z � 1

2 4mm 4�2y2�y �r8; 4��z��m; 2
y
�x� 1

1 8mm 8�2y2�y �r8; 8��z��m; 2y�x� 1

�r8; 83�
�z ��m; 2

y
�x� 1

ÿe � 2

8mm 1 2 �r8; "��m; "� 1

8 m 2�2�2 �r8; "��m; 2��x� 1

210 �r8; "��m; "0� 1

4� �r8; "��m; 4��z� 2

4mm 2 2�2�2 �r8; 2��x��m; "� 1

210 �r8; "
0��m; "� 1

4� �r8; 4��z��m; "� 3

4m0m0 2 2�2�2 �r8; 2��x��m; 2��x� 1

210 �r8; "
0��m; "0� 1

4� �r8; 4��z��m; 4��z� 4

4 2mm 4�2y2�y �r8; 4��z��m; 2
y
�x� 1

�r8; 2y�x��m; 4��z� 4

�r8; 2
y
�x��m; 2

�y
�xy � 3

410 �r8; 4��z��m; "0� 3

�r8; "
0��m; 4��z� 2

�r8; 4��z��m; 40��z � 4

202020 �r8; 2��x��m; "0� 1

�r8; "
0��m; 2��x� 1

�r8; 2��x��m; 20��x � 1

2 4mm 8�2y2�y �r8; 8��z��m; 2y�x� 1

ÿe � 20

8mm 1 20 �r8; "��m; "� 1

8 m 202�20� �r8; "��m; 2��x� 1

210 �r8; "��m; "0� 1

4mm 2 202�20� �r8; 2��x��m; "� 1

210 �r8; "
0��m; "� 1

4m0m0 2 202�20� �r8; 2��x��m; 2��x� 1

210 �r8; "
0��m; "0� 1

4 2mm 202020 �r8; 2��x��m; "0� 1

�r8; "
0��m; 2��x� 1

�r8; 2��x��m; 20��x � 1

2 4mm 42210 �r8; 4��z��m; 2
y
�x� 1

1 8mm 82210 �r8; 8��z��m; 2
y
�x� 1

ÿe � 10

8mm 1 10 �r8; "��m; "� 1

8 m 210 �r8; "��m; 2�z� 1

4mm 2 210 �r8; 2�z��m; "� 1

4m0m0 2 210 �r8; 2�z��m; 2�z� 1

4 2mm 202020 �r8; 2�z��m; 2�x� 1

Table 6 (continued)

G" G=G" ÿ Generators Line

2 4mm 42210 �r8; 4�z��m; 2�x� 1

1 8mm 82210 �r8; 8�z��m; 2�x� 1

�r8; 83�
�z ��m; 2

y
�x� 1

ÿe � 210

8mm 1 210 �r8; "��m; "� 1

8 m 410 �r8; "��m; 4�z� 2

202020 �r8; "��m; 2�x� 1

4mm 2 410 �r8; 4�z��m; "� 3

202020 �r8; 2�x��m; "� 1

4m0m0 2 410 �r8; 4�z��m; 4�z� 4

202020 �r8; 2�x��m; 2�x� 1

4 2mm 42210 �r8; 4�z��m; 2�x� 1

�r8; 2�x��m; 4�z� 4

�r8; 2�x��m; 2 �xy� 3

2 4mm 82210 �r8; 8�z��m; 2�x� 1

ÿe � n

8mm 1 n �r8; "��m; "� 7

8 2 �2n�� �r8; "��m; �2n���z� 8

n10 �r8; "��m; "0� 7

4mm 2 �2n�� �r8; �2n���z��m; "� 9

n10 �r8; "
0��m; "� 7

4m0m0 2 �2n�� �r8; �2n���z��m; �2n���z� 10

n10 �r8; "
0��m; "0� 7

4 2mm �2n�10 �r8; �2n���z��m; "0� 9

�r8; "
0��m; �2n���z� 8

�r8; �2n���z��m; �2n�0��z � 10

ÿe � n0

8mm 1 n0 �r8; "��m; "� 7

8 m n10 �r8; "��m; "0� 7

4mm 2 n10 �r8; "
0��m; "� 7

4m0m0 2 n10 �r8; "
0��m; "0� 7

ÿe � n10 or n0

8mm 1 n10 �r8; "��m; "� 7

8 m �2n�10 �r8; "��m; �2n��z� 8

4mm 2 �2n�10 �r8; �2n��z��m; "� 9

4m0m0 2 �2n�10 �r8; �2n���z��m; �2n���z� 10

ÿe � 222

8mm 1 222 �r8; "��m; "� 5a

8 m 202020 �r8; "��m; "0� 5a

4mm 2 202020 �r8; "
0��m; "� 5a

4�22� �r8; 4��z��m; "� 6

4m0m0 2 202020 �r8; "
0��m; "0� 5a

4 2mm 42210 �r8; 4��z��m; "0� 6

ÿe � 20202

8mm 1 20202 �r8; "��m; "� 5

8 m 202020 �r8; "��m; "0� 5

4mm 2 202020 �r8; "
0��m; "� 5

4�22� �r8; 4��z��m; "� 6

4m0m0 2 202020 �r8; "
0��m; "0� 5

4 2mm 42210 �r8; 4��z��m; "0� 6

ÿe � 202020

4mm 2 42210 �r8; 4�z��m; "� 6
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For the staggered stacking vector in S lattices, for which

r8�z� h� � z� h� b�4� and m�z� h� � z� hÿ b�3�, we

obtain equation (53) together with

��ÿ1���
e �z� h� � 2��

r8
�z� h� ���

m�b�4�� �63a�
��2

e �z� h� � 2��
m�z� h� ÿ��

m�b�3�� �63b�
Noting that the signs of the phases ��

m�b�i�� are unimportant,

the solutions to these equations are

��
r8
�z� h� � 1

2 ��
m�b�4�� � 1

2 ��ÿ1���
e �z� h� � a; �64a�

��
m�z� h� � 1

2 ��
m�b�3�� � 1

2 ��2

e �z� h� � b; �64b�
where a and b are independently 0 or 1=2, but we still need to

check for gauge equivalence using the remaining gauge

freedom given by the gauge functions (45). A gauge trans-

formation with �3�b�i�� � 1=2 changes both of the phases in

equations (64) by 1=2, implying that the two solutions with

ab � 00 and 1
2

1
2 are gauge equivalent and the two solutions

ab � 0 1
2 and 1

2 0 are also gauge equivalent. As representatives

of the gauge-equivalence classes, we take the solutions with

a � 0.

We ®nally note that equations (51) and (53) further imply

that for both lattice types

��8

e �c� � 4��ÿ1���
e �c�; �65�

which is true for the horizontal generating vectors as well and

therefore �8 � ��ÿ1����4.

Table 7
Explicit list of octagonal spin-space-group types with G � 8mm on S
lattices.

The last column refers to line numbers in Table 5, where the possible phase
functions are listed, and rules are given to generate the spin-space-group
symbol.

G" G=G" ÿ Generators Line

ÿe � 1

8mm 1 1 �r8; "��m; "� 1

8 m 2 �r8; "��m; 2�z� 1

20 �r8; "��m; 20�z� 1

10 �r8; "��m; "0� 1

4mm 2 2� �r8; 2��z��m; "� 1

10 �r8; "
0��m; "� 1

4m0m0 2 2� �r8; 2��z��m; 2��z� 1

10 �r8; "
0��m; "0� 1

4 2mm 2�2y2�y �r8; 2��z��m; 2
y
�x� 1

210 �r8; 2��z��m; "0� 1

�r8; "
0��m; 2��z� 1

�r8; 2��z��m; 20��z � 1

2 4mm 4�2y2�y �r8; 4��z��m; 2
y
�x� 1

1 8mm 8�2y2�y �r8; 8��z��m; 2y�x� 1

�r8; 83�
�z ��m; 2

y
�x� 1

ÿe � 2

8mm 1 2 �r8; "��m; "� 1

8 m 2�2�2 �r8; "��m; 2��x� 1

210 �r8; "��m; "0� 1

4� �r8; "��m; 4��z� 2

4mm 2 2�2�2 �r8; 2��x��m; "� 1

210 �r8; "
0��m; "� 1

4� �r8; 4��z��m; "� 3

4m0m0 2 2�2�2 �r8; 2��x��m; 2��x� 1

210 �r8; "
0��m; "0� 1

4� �r8; 4��z��m; 4��z� 4

4 2mm 4�2y2�y �r8; 4��z��m; 2
y
�x� 1

�r8; 2y�x��m; 4��z� 2

�r8; 2
y
�x��m; 2

�y
�xy � 3

410 �r8; 4��z��m; "0� 3

�r8; "
0��m; 4��z� 2

�r8; 4��z��m; 40��z � 4

202020 �r8; 2��x��m; "0� 1

�r8; "
0��m; 2��x� 1

�r8; 2��x��m; 20��x � 1

2 4mm 8�2y2�y �r8; 8��z��m; 2y�x� 1

ÿe � 20

8mm 1 20 �r8; "��m; "� 1

8 m 202�20� �r8; "��m; 2��x� 1

210 �r8; "��m; "0� 1

4mm 2 202�20� �r8; 2��x��m; "� 1

210 �r8; "
0��m; "� 1

4m0m0 2 202�20� �r8; 2��x��m; 2��x� 1

210 �r8; "
0��m; "0� 1

4 2mm 202020 �r8; 2��x��m; "0� 1

�r8; "
0��m; 2��x� 1

�r8; 2��x��m; 20��x � 1

2 4mm 42210 �r8; 4��z��m; 2
y
�x� 1

1 8mm 82210 �r8; 8��z��m; 2
y
�x� 1

ÿe � 10

8mm 1 10 �r8; "��m; "� 1

8 m 210 �r8; "��m; 2�z� 1

4mm 2 210 �r8; 2�z��m; "� 1

4m0m0 2 210 �r8; 2�z��m; 2�z� 1

4 2mm 202020 �r8; 2�z��m; 2�x� 1

Table 7 (continued)

G" G=G" ÿ Generators Line

2 4mm 42210 �r8; 4�z��m; 2�x� 1

1 8mm 82210 �r8; 8�z��m; 2�x� 1

�r8; 83�
�z ��m; 2

y
�x� 1

ÿe � n

8mm 1 n �r8; "��m; "� 6

8 2 �2n�� �r8; "��m; �2n���z� 7

n10 �r8; "��m; "0� 6

4mm 2 �2n�� �r8; �2n���z��m; "� 8

n10 �r8; "
0��m; "� 6

4m0m0 2 �2n�� �r8; �2n���z��m; �2n���z� 9

n2�2� �r8; 2��x��m2��x� 10

n10 �r8; "
0��m; "0� 6

4 222 �2n��2y2�y �r8; �2n��z2
�y
�x ��m; 2

y
�x� 11

n2210 �r8; 2��x��m; 20��x � 10

�2n�10 �r8; �2n���z��m; "0� 8

�r8; "
0��m; �2n���z� 7

�r8; �2n���z��m; �2n�0��z � 9

ÿe � n0

8mm 1 n0 �r8; "��m; "� 6

8 m n10 �r8; "��m; "0� 6

4mm 2 n10 �r8; "
0��m; "� 6

4m0m0 2 n02�20� �r8; 2��x��m; 2��x� 10

n10 �r8; "
0��m; "0� 6

4 222 n2210 �r8; 2��x��m; 20��x � 10

ÿe � 2�2�2

4m0m0 2 4y2�2�y �r8; 4y�z��m; 4y�z� 5

4 2mm 42210 �r8; 4
y
�z��m; 4

0y
�z � 5



The phase functions for point group G � 8mm are

summarized in Table 4 for V lattices and Table 5 for S lattices.

7. Spin-group tables

Tables B-1 to B-16 in Appendix B contain in compact form all

the information needed to generate the complete list of

octagonal spin space-group types (shown here are only Tables

4 and 5 for the case of point group G � 8mm as examples). All

that is still required is to explicitly identify the spin-space

operations �, and whenever necessary �, � and �, recalling that

these operations must also satisfy the constraints, summarized

in Table 3, that are due to the isomorphism between G=G" and

ÿ=ÿe. Once these operations are identi®ed, their different

combinationsÐ�8, ��ÿ1, �ÿ1��� etc.Ðthat determine the

phase functions can be calculated to give the different spin-

space-group types. The explicit identi®cation of spin-space

operations for point group G � 8mm are listed in Table 6 for

V lattices and in Table 7 for S lattices. The complete set of

tables for all octagonal point groups are listed in Appendix C.

For each spin-space-group table (Tables B-1 to B-16), there is

a corresponding table in Appendix C that lists all the possible

identi®cations of spin-space operations and, for each one,

indicates the line in the spin-space-group table to which it

corresponds.

To each spin space-group type, we give a unique symbol

based on the familiar International (Hermann±Mauguin)

symbols for the regular (nonmagnetic) space groups. To

incorporate all the spin-space-group information, we augment

the regular symbol, which for the case of octagonal quasi-

crystals is explained in detail by Rabson et al. (1991), in the

following ways: (i) the symbol for the lattice spin group ÿe is

added as a superscript over the lattice symbol, unless ÿe � 1

or 10; (ii) the values of the phase functions, associated with the

elements of ÿe, are encoded by subscripts under the lattice

symbol, describing the sublattices de®ned by the zeros of the

phase functions for the operations in the symbol for ÿe (as

explained in x4); (iii) to each generator of the point group G,

we add a superscript listing an operation from the coset of ÿe

with which it is paired (if that operation can be ", we omit it, if

it can be "0, we simply add a prime, and we omit the axis about

which rotations are performed if it is the �z axis); (iv) the values

of phase functions for the spin-point-group generators ��
r8

,

��
�r8

, ��
m, ��

d and ��
h are encoded by making changes and

adding subscripts to the point-group symbol (similar to the

way it is done for the regular space groups), as described in the

captions of Tables B-1 to B-16, where we use the same nota-

tion, simply without explicitly listing ÿe and its associated

phase functions, and without explicitly identifying the spin-

space operations paired with the point-group generators.

Speci®c examples of spin-space-group symbols can be found in

the captions of Table 4 as well as Tables B-1, B-2, B-5 and

B-16.

8. Magnetic selection rules

We calculate the symmetry-imposed constraints on S�k� for

any wavevector k �P4
i�1 nib

�i� � lc in the magnetic lattice L,

as described in the companion paper (Lifshitz & Even-Dar

Mandel, 2004), by considering all spin-point-group operations

�g; � for which gk � k. The point-group condition for each of

these operations provides an eigenvalue equation

S�k� � eÿ2�i�

g �k�S�k�; �66�

from which we obtain the constraints on S. These constraints

may require S�k� to vanish or to take a particular form that

transforms under the operations  in (66) according to the

one-dimensional representation dictated by the phases �
g �k�.

When there are no constraints then S � �S�x; S�y; S�z� is an

arbitrary three-component axial vector. When there are

constraints, S�k� takes one of the following forms:

Sx � �S�x; 0; 0�;
Syz � �0; S�y; S�z�;
S� � �S�x;�iS�x; 0�;

Sy � �0; S�y; 0�;
Szx � �S�x; 0; S�z�;
Sÿ � �S�x;ÿiS�x; 0�;

Sz � �0; 0; S�z�;
Sxy � �S�x; S�y; 0�;

�67�
as explained below.

In x8.1, we determine the selection rules due to elements in

ÿe. These affect all wavevectors k 2 L, and are summarized in

Tables 8±12. In x8.2, we determine the remaining selection

rules for wavevectors that lie in the invariant subspaces of the

different point-group elements. These selection rules are

expressed in a general manner in terms of the spin-space
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Table 8
Restrictions on the form of S�k� for any wavevector k in the magnetic
lattice L when ÿe � 2, 20 or 10.

In each case, the form of S�k� depends on the particular values of the phases
�

e �b�i�c�, where  is the generator of ÿe, and on the parities of
P

ni and l,
where k �P4

i�1 nib
�i� � lc. Each entry in the table contains three values for

the form of S�k�: the one on the left is for ÿe � 2; the one in the center is for
ÿe � 20; and the one on the right is for ÿe � 10.

Lattice spin group
P

ni even
P

ni odd

Symbols �
e �b�i�c� l even l odd l even l odd

P

2c; S


P 0 1

2 Sz=Sxy=0 Sxy=Sz=S Sz=Sxy=0 Sxy=Sz=S

P

P

1
2 0 Sz=Sxy=0 Sz=Sxy=0 Sxy=Sz=S Sxy=Sz=S

P

S

1
2

1
2 Sz=Sxy=0 Sxy=Sz=S Sxy=Sz=S Sz=Sxy=0

Table 9
Restrictions on the form of S�k� for any wavevector k 2 L when ÿe � 210.

In each case, the form of S�k� depends on the particular values of the phase
functions for the generators of ÿe, and on the parities of

P
ni and l, where

k �P4
i�1 nib

�i� � lc.

Lattice spin group
P

ni even
P

ni odd

Symbols �
2�z
e �b�i�c� �"0

e �b�i�c� l even l odd l even l odd

P210
2c;P 0 1

2
1
2 0 0 0 Sz Sxy

P210
2c;S 0 1

2
1
2

1
2 0 Sxy Sz 0

P210
P;2c

1
2 0 0 1

2 0 Sz 0 Sxy

P210
P;S

1
2 0 1

2
1
2 0 Sz Sxy 0

P210
S;2c

1
2

1
2 0 1

2 0 Sxy 0 Sz

P210
S;P

1
2

1
2

1
2 0 0 0 Sxy Sz
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operations paired with these point-group elements, without

identifying them explicitly.

8.1. Calculation of selection rules due to Ce

If  is an operation of order 2 then its phases �
e �k� are

either 0 or 1=2. In this case, equation (66) reduces to

S�k� � S�k� if �
e �k� � 0,

ÿS�k� if �
e �k� � 1

2,

�
�68�

so, if �
e �k� � 0, S�k� must be invariant under  and, if

�
e �k� � 1=2, it must change its sign under . This implies

different constraints on the form of S�k� depending on the

particular type of operation of order 2:

1. If  is the time inversion "0, then S�k� � 0 if �
e �k� � 0

and there are no constraints on S�k� if �
e �k� � 1=2.

2. If  is a twofold rotation 2�z, then S�k� � Sz if �
e �k� � 0

and S�k� � Sxy if �
e �k� � 1=2. Similar constraints are

obtained for rotations about the other two axes.

3. If  is a twofold rotation followed by time inversion 20�z,

then S�k� � Sxy if �
e �k� � 0 and S�k� � Sz if

�
e �k� � 1=2. Similar constraints are obtained for primed

rotations about the other two axes.

Thus, for lattice spin groups ÿe containing only operations of

order 2, the form of S�k� depends on whether the phases at

k �P4
i�1 nib

�i� � lc, associated with all the operations, are 0 or

1=2. This can easily be calculated for each ÿe from the values

of its phase functions on the lattice-generating vectors. The

outcome depends, at most, on the parities of n1 � n3, n2 � n4

and l. Tables 8±11 summarize the results for all such ÿe.

For operations of order greater than 2, we ®nd that

4. If  is an n-fold rotation n�z (n> 2), then equation (66)

requires S�k� to acquire the phase 2��
n�z
e �k� upon appli-

cation of the n-fold rotation. One can directly verify that

the only possible forms that S can have that satisfy this

requirement are

S�k� �
Sz if �

n�z
e �k� � 0,

S� if �
n�z
e �k� � � 1

n,

0 otherwise.

(
�69�

5. If  is an n-fold rotation followed by time inversion n0�z,

then one can obtain the constraints on the form of S from

the constraints (69) by adding 1=2 to the phases, thus

S�k� �
Sz if �

n0
�z

e �k� � 1
2,

S� if �
n0

�z
e �k� � 1

2� 1
n,

0 otherwise.

8<: �70�

Table 12 summarizes the results for lattice spin groups

ÿe � n, n0 and n10, containing operations of order greater

than 2.

Table 10
Restrictions on the form of S�k� for any wavevector k in the magnetic lattice L when ÿe � 222 and 20202.

In each case, the form of S�k� depends on the particular values of the phase functions for the generators 2��x and 2��y of ÿe, where the asterisk denotes an optional
prime, and on the parities of n1 � n3, n2 � n4 and l, where k �P4

i�1 nib
�i� � lc. Each entry in the table contains two values for the form of S�k�: the one on the left is

for ÿe � 222; and the one on the right is for ÿe � 20202.

n1 � n3 even n1 � n3 odd

Lattice spin group n2 � n4 even n2 � n4 odd n2 � n4 even n2 � n4 odd

Symbols �
2�

�x
e �b�i�c� �

2�
�y

e �b�i�c� l even l odd l even l odd l even l odd l even l odd

P222
2c;P;S;P20202

2c;P;S 0 1
2

1
2 0 0=Sz Sy=Sx Sx=Sy Sz=0 Sx=Sy Sz=0 0=Sz Sy=Sx

P20202
2c;S;P 0 1

2
1
2

1
2 0=Sz Sz=0 Sx=Sy Sy=Sx Sx=Sy Sy=Sx 0=Sz Sz=0

P20202
P;S;2c; S222

I�p;P; S20202
I�p;P

1
2 0 1

2
1
2 0=Sz Sx=Sy Sz=0 Sy=Sx Sz=0 Sy=Sx 0=Sz Sx=Sy

P222
P�p;P;P20202

P�p;P A00 A10 0=Sz 0=Sz Sy=Sx Sy=Sx Sx=Sy Sx=Sy Sz=0 Sz=0

P222
I�p;P;P20202

I�p;P A0
1
2 A1

1
2 0=Sz Sz=0 Sy=Sx Sx=Sy Sx=Sy Sy=Sx Sz=0 0=Sz

Table 11
Restrictions on the form of S�k� for any wavevector k 2 L when ÿe � 202020.

In each case, the form of S�k� depends on the particular values of the phase functions for the generators 20�x, 20�y and 20�z of ÿe, and on the parities of n1 � n3, n2 � n4

and l, where k �P4
i�1 nib

�i� � lc.

n1 � n3 even n1 � n3 odd

Lattice spin group n2 � n4 even n2 � n4 odd n2 � n4 even n2 � n4 odd

Symbols �
20

�x
e �b�i�c� �

20
�y

e �b�i�c� �
20

�z
e �b�i�c� l even l odd l even l odd l even l odd l even l odd

P202020
P�p;2c A00 A10 0 1

2 0 Sz Sx 0 Sy 0 0 0

P202020
P�p;S A00 A10 1

2
1
2 0 Sz 0 Sx 0 Sy 0 0

P202020
I�p;2c A0

1
2 A1

1
2 0 1

2 0 0 Sx 0 Sy 0 0 Sz

P202020
I�p;S A0

1
2 A1

1
2

1
2

1
2 0 0 0 Sy 0 Sx 0 Sz



8.2. Additional selection rules on invariant subspaces of
nontrivial point-group operations

In addition to the selection rules arising from ÿe, there are

also selection rules that occur when k lies along one of the

rotation axes or within one of the mirror planes and is

therefore invariant under additional operations �g; � with

non-trivial g. In this case, the eigenvalue equation (66)

imposes further restrictions on the Fourier coef®cients of the

spin density ®eld.

8.2.1. Selection rules along the z axis. When the eightfold

rotation r8 is in the point group G, it leaves all the wavevectors

along the z axis invariant. These wavevectors are given by

k � lz, where l is any integer if the lattice is vertical and l is

even if the lattice is staggered. For both lattice types, equation

(66), determining the selection rules for these wavevectors,

becomes

�S�lz� � eÿ2�il��
r8
�c�S�lz�; �71�

where c is the appropriate stacking vector. When G is gener-

ated by �r8 and does not contain r8, the wavevectors along the z

axis are left invariant by �r2
8 and its powers. The phase

�
��2

�r2
8

�lz� � �
��
�r8
��r8lz� ��

��
�r8
�lz� is necessarily zero because

�r8lz � ÿlz. Equation (66) can therefore be written as

��2S�lz� � S�lz�; �72�
requiring S�lz� to be invariant under ��2, where �� is the spin-

space operation paired with �r8.

8.2.2. Selection rules within the horizontal mirror h. If the

horizontal mirror h is present in the point group then all the

Fourier coef®cients of the spin density ®eld associated with

wavevectors kh �
P

i nib
�i� in the horizontal sublattice are

subject to selection rules, dictated by the values of the phase

function ��
h. Equation (66), for both lattice types, is simply

�S�kh� � eÿ2�i
P4

i�1
ni�

�
h
�b�i��S�kh�: �73�

Thus, if a horizontal mirror is present in the point group, then

S�kh�, for kh �
P

i nib
�i� in the horizontal sublattice, must

remain invariant under � unless (a) ��
h�b�i�� � 1

2 0 1
2 0 and

n1 � n3 is odd; or (b) ��
h�b�i�� � 0 1

2 0 1
2 and n2 � n4 is odd; or (c)

��
h�b�i�� � 1

2
1
2

1
2

1
2 and

P
i ni is odd; in which case, S�kh� must

change its sign under �.

8.2.3. Selection rules within vertical mirrors and along
dihedral axes. There are two sets of conjugate vertical mirrors

which we have labeled m and m0 and two sets of conjugate

dihedral axes d and d0. It is suf®cient to determine the selec-

tion rules for a single member of each of these four sets

because the selection rules for the remaining conjugate

operations can be inferred from the eightfold rotational

symmetry of the spin density ®eld. To see this, take for

example the operation �m; �� and examine all the wavevectors

k, satisfying mk � k, to obtain the general selection rules for

the invariant subspace of m,

�S�k� � eÿ2�i��
m�k�S�k�: �74�

If g is the eightfold generator of the point group (r8 or �r8),

paired with the spin-space operation �, then the selection rules

on the invariant subspaces of the remaining three conjugate

operations are simply given by
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Table 12
Restrictions on the form of S�k� for any wavevector k 2 L when ÿe � n, n0 and n10.

In each case, the form of S�k� depends on the particular value of the phase functions for the generators of ÿe, on the parity of
P

ni, and on the value of l, where
k �P4

i�1 nib
�i� � lc. The conditions for obtaining non-extinct S�k� are listed separately for ÿe � n, ÿe � n0 (even n) and ÿe � n0 (odd n). The restrictions on the

form of S�k� for ÿe � n10 are obtained from those of ÿe � n with the additional requirement that S�k� � 0 if: (i) �"0
e �b�i�c� � 0 1

2 and l is even; (ii) �"0
e �b�i�c� � 1

2 0 andP
ni is even; or (iii) �"0

e �b�i�c� � 1
2

1
2 and

P
ni � l is even.

ÿe � n ÿe � n0 (even n) ÿe � n0 (odd n)

�
n�z
e �b�i�c� lj (mod n) �

n0
�z

e �b�i�c� lj (mod n) �
n0

�z
e �b�i�c� lj (mod 2n)

P
ni even

P
ni odd

Pn
njc
; Sn

njc
Pn0

nj c
; Sn0

njc
Pn0
�2n�j c; Sn0

�2n�j c

0 j
n 0 0 j

n
n
2 0 j

2n n Sz Sz

�1 n
2 � 1 n� 2 S� S�

ÿ1 n
2 ÿ 1 nÿ 2 Sÿ Sÿ

otherwise otherwise otherwise 0 0

Pn
nj S
; S4

4jS
Pn0

njS
; S40

4jS
Pn0
�2n�jS

1
2

j
n 0 1

2
j
n

n
2

1
2

j
2n n Sz 0

�1 n
2 � 1 n� 2 S� 0

ÿ1 n
2 ÿ 1 nÿ 2 Sÿ 0

n
2 0 0 0 Sz
n
2 � 1 �1 �1 0 S�
n
2 ÿ 1 ÿ1 ÿ1 0 Sÿ
otherwise otherwise otherwise 0 0

Pn
�n=2�jP Pn0

�n=2�jP Pn0
njP

1
2

2j
n 0 or n

2
1
2

2j
n 0 or n

2
1
2

j
n 0 or n Sz 0

n
4 � 1

2 or 3n
4 � 1

2
n
4 � 1

2 or 3n
4 � 1

2
n
2 � 1 or 3n

2 � 1 0 S�
n
4 ÿ 1

2 or 3n
4 ÿ 1

2
n
4 ÿ 1

2 or 3n
4 ÿ 1

2
n
2 ÿ 1 or 3n

2 ÿ 1 0 Sÿ
otherwise otherwise otherwise 0 0
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�n��ÿnS�gnk� � eÿ2�i��
m�k�S�gnk�; n � 1; 2; 3; �75�

where we have used the fact that, since mk � k, it follows from

successive applications of the group compatibility condition

(1) that

����ÿ1

gmgÿ1 �gk� � ��
m�k�: �76�

Similar expressions can be derived for the other operations

and so we proceed below to obtain the general selection rules

only for the vertical mirrors and dihedral axes that are

oriented either along the generating vector b�1� or between the

two generating vectors b�1� and b�2� (as depicted in Fig. 1).

Wavevectors along the dihedral axis d, containing the

generating vector b�1�, on either lattice type, can be expressed

as kd � n1b�1� � n2�b�2� ÿ b�4�� for any two integers n1 and n2.

Since it is always the case that ��
d�b�2� ÿ b�4�� � 0, the selec-

tion rules for such wavevectors are determined by

�S�kd� � eÿ2�in1��
d �b�1��S�kd�: �77�

Thus, if a dihedral operation �d; �� is present in the spin point

group, then S�kd�, for kd along the axis of d, must remain

invariant under �, unless ��
d�b�1�� � 1

2 and n1 is odd, in which

case S�kd� must change its sign under �.

Wavevectors along the dihedral axis d0, between the

generating vectors b�1� and b�2�, on either lattice type, can be

expressed as kd0 � n1�b�1� � b�2�� � n3�b�3� ÿ b�4�� for any two

integers n1 and n3. Since it is always the case that

��0
d0 �b�1� ÿ b�3�� � ��0

d0 �b�2� � b�4�� � 0, the selection rules are

determined by

�0S�kd0 � � eÿ2�i�n1�n3���0
d0 �b�1��b�2��S�kd0 �: �78�

Thus, if a dihedral operation �d0; �0� is present in the spin point

group then S�kd0 �, for kd0 along the axis of d0, must remain

invariant under �0, unless ��0
d0 �b�i�� � 0 1

2 0 1
2 or 1

2 0 1
2 0 and

n1 � n3 is odd, in which case, S�kd0 � must change its sign under

�0. The operation �0, as well as the values of the phase function

��0
d0 , are determined for each separate spin point group

according to the generating relations for that group, namely,

�d0; �0� � �r8; ���d; �� for point group 822, �d0; �0� �
��r8; ���m; �� for point group �8m2 and �d0; �0� �
�r8; ���m; ���h; �� for point group 8=mmm.

Wavevectors within the vertical mirror m, containing the

generating vector b�1�, can be expressed as km �

n1b�1� � n2�b�2� ÿ b�4�� � lz, where l is any integer if the lattice

is vertical and l is even if the lattice is staggered. This is

because there are no wavevectors in odd layers of S lattices

that are invariant under mirrors of type m (Rabson et al., 1991,

footnote 46). Since it is always the case that

��
m�b�2� ÿ b�4�� � 0, the selection rules for such wavevectors

are determined by

�S�km� � eÿ2�i�n1��
m�b�1���l��

m�c��S�km�: �79�

Finally, wavevectors within the vertical mirror m0, between

the generating vectors b�1� and b�2�, on both lattice types, can

be expressed as km0 � n1�b�1� � b�2�� � n3�b�3� ÿ b�4�� � lc for

any three integers n1, n3 and l, where c is the appropriate

stacking vector. Since it is always the case that

��0
m0 �b�1� ÿ b�3�� � ��0

m0 �b�2� � b�4�� � 0, the selection rules are

determined by

�0S�km0 � � eÿ2�i��n1�n3���0
m0 �b

�1��b�2���l��0
m0 �c��S�kd0 �: �80�

This completes the general calculation of selection rules on

invariant subspaces of point-group operations. One can apply

these rules in a straightforward manner to each spin space

group once the spin-space operations �, �, � and � are ex-

plicitly identi®ed.

This research was funded by the Israel Science Foundation

through Grant No. 278/00.

References

Lifshitz, R. (1995). Proceedings of the 5th International Conference on
Quasicrystals, edited by C. Janot & R. Mosseri, pp. 43±46.
Singapore: World Scienti®c.

Lifshitz, R. (1997). Rev. Mod. Phys. 69, 1181±1218.
Lifshitz, R. (1998). Phys. Rev. Lett. 80, 2717±2720.
Lifshitz, R. & Even-Dar Mandel, S. (2004). Acta Cryst. A60, 167±178.
Lifshitz, R. & Mermin, N. D. (1994). Acta Cryst. A50, 85±97.
Litvin, D. B. (1973). Acta Cryst. A29, 651±660.
Litvin, D. B. (1977). Acta Cryst. A33, 279±287.
Litvin, D. B. & Opechowski, W. (1974). Physica (Utrecht), 76,

538±554.
Mermin, N. D., Rabson, D. A., Rokhsar, D. S. & Wright, D. C. (1990).

Phys. Rev. B, 41, 10498±10502.
Rabson, D. A., Mermin, N. D., Rokhsar, D. S. & Wright, D. C. (1991).

Rev. Mod. Phys. 63, 699±734.


